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Abstract— We study the problem of coordinating an Un-
manned Aerial Vehicle (UAV) and an Unmanned Ground
Vehicle (UGV) for a precision agriculture application. In this
application, the ground and aerial measurements are used for
estimating nitrogen (N) levels on-demand across a farm. Our
goal is to estimate the N map over a field and classify each
point based on N deficiency levels. These estimates in turn guide
fertilizer application. Applying the right amount of fertilizer at
the right time can drastically reduce fertilizer usage.

Towards building such a system, this paper makes the
following contributions: First, we present a method to identify
points whose probability of being misclassified is above a
threshold. Second, we study the problem of maximizing the
number of such points visited by an UAV subject to its energy
budget. The novelty of our formulation is the capability of
the UGV to mule the UAV to deployment points. This allows
the system to conserve the short battery life of a typical UAV.
Third, we introduce a new path planning problem in which
the UGV must take a measurement within a disk centered at
each point visited by the UAV. The goal is to minimize the total
time spent in traveling and measuring. For both problems, we
present constant-factor approximation algorithms. Finally, we
demonstrate the utility of our system with simulations which
use manually collected soil measurements from the field.

I. INTRODUCTION

Precision agriculture can improve crop productivity and

farm profits through better management of farm inputs,

leading to higher environmental quality [1]. By measuring

soil nitrogen levels across a farm and applying the right level

of nitrogen at the right time and place, it is possible to reduce

fertilizer usage by 25% without affecting corn yield [2].

One of the key components of precision agriculture is

data collection, typically done manually and through remote

sensing. However, satellite and aerial remote sensing can

be severely limited by cloud cover [3], and may not be

available at desired times (update frequency can be from

3 to 26 days). Remote sensing from a manned or remotely-

piloted aerial device is costly and difficult to plan against

weather conditions. Further, soil moisture, crop height, and

pest infestations cannot be measured remotely in a vegetated

crop. Data can also be gathered manually or by guiding a

vehicle equipped with sensors through the field [4]. This

process can be tedious. Hence, we are building a robotic

data collection system with small, low-cost Unmanned Aerial
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Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs)

working together. Our system will provide on-demand sens-

ing capabilities, and combine the strengths of ground and

aerial robots: ground robots are capable of traveling long

distances, carrying large loads and measuring soil data but

cannot obtain aerial imagery. Small aerial vehicles can take

images from a low altitude but have limited battery life.

In this paper, we develop path planning algorithms for

the application of estimating the nitrogen (N) levels in an

agriculture plot. We start with a prior N level map (e.g.,

obtained from satellite imagery). The goal is to classify each

point to identify regions with N deficiency. We first identify

points in the prior map with a high probability of being

misclassified (Section IV). The system is then charged with

obtaining additional soil and aerial measurements near these

points. Due to the UAV’s limited battery life, it may not be

feasible to visit all points. Therefore we seek to visit the

maximum number of points using both the UAV and UGV.

Our proposed solution is to use the UGV to deploy the

UAV at carefully selected locations. As the UAV is taking

images, the UGV will take soil measurements nearby. The

UAV can then land on the UGV which will take the UAV

to the next deployment location. Landing and ascending

consumes energy, leading to the problem of choosing how

often to land. Our main contribution in Section V is to show

how to compute a series of deployments which visit at least a

constant factor of the points visited by an optimal algorithm.

Obtaining soil measurements with the UGV is likely to be

time-consuming. We can reduce the total time by combining

measurement locations of nearby points. This leads to a novel

variant of the Traveling Salesperson Problem with Neigh-

borhoods (TSPN) considering both travel and measurement

time, which we call the Sampling TSPN Problem. We present

a constant factor approximation algorithm for this problem.

Finally, armed with these algorithms, we demonstrate the

benefit of using the UAV+UGV system with simulations

using real data collected from a corn field (Section VI).

We now review the related work in this area.

II. RELATED WORK

The problem of designing informative sensor trajectories

has recently received much attention. Low et al. [5] pre-

sented a control strategy to minimize the probability of

misclassification with a Gaussian Process (GP). Zhang and

Sukhatme [6] presented an adaptive sensing algorithm to

estimate a scalar field. In these works, the measurements

are assumed to take negligible time and the robots obtain

measurements at each time-step. In this paper, we explicitly
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consider the measurement time and the goal is to find a path

minimizing both travel and measurement time.

Singh et al. [7] presented an approximation algorithm to

find a path maximizing mutual information between “cells”

that are sampled and not sampled, subject to a distance

budget based on the algorithm in [8]. However, the approx-

imation guarantees depend on the size of the cells and the

running time is exponential in the log of number of cells.

Finding a tour visiting most points (or collecting most

reward) subject to a budget is known as the orienteering

problem. Blum et al. [9] presented a 4-approximation for this

problem on metric graphs. In Section V, we show how to

model the problem of visiting most points with a symbiotic

UAV and UGV as an orienteering problem.

Once the subset of points are found, the goal is to find a

minimum cost UGV tour to visit them. The classical problem

of finding the shortest length tour of a set of sites is known

as the Traveling Salesperson Problem (TSP). Relevant to our

application is the variant known as TSP with Neighborhoods

(TSPN), where the tour must visit a point in each site’s

neighborhood. Dumitrescu and Mitchell [10] presented an

11.15-approximation algorithm for possibly overlapping unit

disk neighborhoods. In our problem, the cost is the total

time taken for traveling and obtaining soil measurements.

As we discuss in Section V, a minimum length tour is not

necessarily a minimum time tour.

Bhadauria et al. [11] studied the problem of computing

a minimum time tour for k robots to wirelessly download

data from sensors by visiting a point in the sensor’s range.

The robots have to separately query each sensor, unlike our

case, where the soil measurements for multiple points can

be combined by sampling in the intersection of their neigh-

borhoods. Alt et al. [12] studied the problem of covering a

given set of points with k radio antenna with circular ranges

by choosing the center and radius ri for each circle. The cost

function is a weighted sum of the length of the tour and the

sum of rαi for each disk (α models the radio transmission

power). We do not require a fixed number of samples k, and

instead penalize higher k in the cost.

Recently, there has been a significant interest in de-

veloping cooperative aerial and ground/surface/underwater

robot systems. Tanner [13] and Grocholsky et al. [14] pre-

sented systems and algorithms for coordinating aerial and

ground vehicles for detecting and locating targets. Sujit and

Saripalli [15] studied the problem of exploration to detect

targets using an UAV and inspection of the targets with

Autonomous Underwater Vehicles. Unlike these works, we

explicitly consider that the UAV can be carried between

takeoff locations by the UGV in the sensor planning phase.

We begin by formalizing the problem. In this paper, we

state the key lemmas leading to the main results. Full proofs

are included in the accompanying technical report [16].

III. PROBLEM FORMULATION

Our operating environment is a farm plot, discretized into

a set of points X = {x1, x2, · · · , xn}. A Gaussian Process is

used to estimate N levels from prior measurements [17], [18].

For each point we associate the most-likely nitrogen estimate

as N(x), with variance σ(xi). A common task is to find

regions in the plot with similar N levels. For example, the

task can be to classify each point in the plot into three labels:

low N, medium N, and high N. In general, we are given a

set of labels, and each label Li is specified by a minimum

and maximum N level, L−
i , L

+

i respectively. Define Plj(xi)
as the probability that the label j for point xi is correct,

i.e., Plj(xi) = P(N(xi) ∈ [L−
j , L

+

j ]). We will use Pl(xi) to

denote the probability of the current (most likely) label.

We define Potentially Mislabeled (PML) points as all

points in X for which the probability of assigning an

incorrect label is greater than a desired value Pd ∈ (0, 1).
Thus, Xpml = {xi ∈ X : 1 − Pl(xi) ≥ Pd}. Our goal is

to reduce the probability of mislabeling by taking additional

soil and aerial measurements near the PML points.

The UAV spends some part of its energy budget (denoted

by B) for each take-off and landing. We denote the average

of these energy costs by Ca, so that a combined take-off and

landing takes 2Ca. We assume that the UAV and UGV travel

at unit speed and the energy required to travel is proportional

to the travel time. Hence, we use distance, time and energy

interchangeably. If τa is a set of k deployments for the UAV,

then the total cost of the tour is len(τa) + 2kCa, where

len(τa) is the sum of lengths of paths in all deployments.

Our problem can be concisely stated as,

Problem 1 (UAV coverage): Find a UAV tour τa consist-

ing of one or more paths (each with a take-off and landing

location), to sample the maximum number of PML points,

such that the tour cost is not greater than the UAV budget.

Given the PML points visited by the UAV, our next objec-

tive is to design a UGV path that obtains soil measurements

in the least time. The spatial correlation of soil properties

means that nearby points are likely to have the same N

level. Hence, as described in Section IV, the location of the

measurement relative to any PML point should be within

a specified radius. The UGV can thus combine measure-

ments for multiple points if their radii overlap. The UGV

is assumed to have sufficient fuel for the entire trip, but

the time cost must be minimized. If τg is a UGV tour

with k measurement locations, then the cost of the tour is

given as len(τg) + kCg , where Cg is the time cost for each

measurement. Our second optimization problem is then,

Problem 2 (UGV cost): Given the set of points visited by

the UAV and a radius associated with each point, find a UGV

tour of minimum cost that obtains at least one measurement

within the radius of each point.

IV. FINDING POTENTIALLY MISLABELED POINTS

In this section we discuss how to find measurement

locations for each point, such that the probability the point is

mislabeled is less than a pre-defined threshold, Pd. Note Pd

is an upper bound on the probability that N(xi) is outside

the range [L−(xi),L
+(xi)]. Let Φ(a) denote the Normal

Gaussian CDF. Then for all points xi, we require

Φ

(

L−(xi)−N(xi)

σ(xi)

)

+ 1− Φ

(

L+(xi)−N(xi)

σ(xi)

)

≤ Pd
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For any N(xi), there exists a corresponding σ(xi)
which satisfies above equation. Define ∆(xi) ,
min (|L+(xi)−N(xi)|, |L−(xi)−N(xi)|). We have,

2 · Φ

(

−∆(xi)

σ(xi)

)

≤ Pd

∴
−∆(xi)

Φ−1

(

Pd

2

) ≥ σ(xi) (1)

Φ−1(x) is negative-valued when x < 0.5. We refer to the

left hand side of above equation by σd(xi).
Measurements taken near xi reduce σ(xi) due to the

spatial correlation of the N values. Let the measurement
location be denoted by z, and the sensor noise variance be
σs. Correlation between N levels at z and xi is modeled by
the GP equations [17]. The new variance at xi, conditioned
on the measurement z, satisfies,

σ
2(xi|z) =σ

2(xi)−K(xi, z)[K(z, z) + σ
2

s ]
−1

K
T (xi, z) (2)

K(·, ·) is the covariance or kernel function of the GP [17].

We use the squared exponential function, which is commonly

used in our intended application [18].

Recall σ2(xi|z) should be no greater than σ2
d by Equa-

tion 1. Given z, Equation 2 simplifies as follows,

σ2
d(xi)− σ2(xi) ≥ −σ4

f (σ
2
f + σ2

s )
−1 exp(− 1

2l2
||xi − z||2)

where σf and l are the hyperparameters of the covariance

function, which are previously learned from the data [17].
Further rearrangement and taking the natural log of both

sides, yields a constraint on the range of z from xi.

||xi − z||2 ≤ −2l2 log[(σ2(xi)− σ
2

d(xi))(σ
2

f + σ
2

s)σ
−4

f ] (3)

Thus, for every PML point xi ∈ Xpml (i.e., points where

N estimates do not satisfy Equation 1), we can find an upper

bound on the distance of a measurement, z, from xi using

Equations 1 and 3. A sample obtained within this distance

will yield small enough variance on N(xi) to determine the

proper label with desired certainty for all PML points.

V. PATH OPTIMIZATION

In this section, we describe our algorithm for finding the

UAV+UGV tours to visit the PML points. Our algorithm

operates in two phases: we first find the largest subset of

PML points to be visited by the UAV, subject to its energy

budget (Problem 1). Then we find a UGV tour to obtain soil

measurements near this subset of PML points (Problem 2).

A. Computing the UAV Tour

Visiting the largest subset of PML points with a UAV sub-

ject to an energy budget can be reduced to the orienteering

problem. Given a graph G(V,E, π, w) with edge weights

w(u, v), and vertex rewards π(v), the orienteering problem

is to find a tour of a subset of V collecting maximum reward,

such that the sum of edge weights on the tour is less than

the given budget. In the following, we show how to create

such a graph for our problem.

First consider the simpler case of a UAV–only system with

a camera whose footprint is a single point. The UAV tour
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Fig. 1. Computing the UAV tour: (a) Grid of resolution D/
√

2. The reward
for visiting a grid point (red square) is the number of PML points (gray
stars) in each cell. (b) UAV tour found using orienteering with budget of 500
secs. 200 secs are spent for traveling and 240 secs for the 2 ascents/descents.

will consist of a single path with one take-off and landing

location. We build a complete Euclidean graph with PML

points as the vertices. Each vertex is given a unit reward.

The budget for the UAV equals B − 2Ca to account for the

single takeoff and landing. The solution for the orienteering

problem will be a tour traversing a set of PML points. The

reward equals the total number of PML points on this tour.

Since the edge weights are Euclidean distances, this graph

is a complete metric graph. Applying the 4-approximation

algorithm in [9] will yield a UAV tour visiting at least 1/4th

of the PML points visited by the optimal algorithm.

In an UAV+UGV system, the UGV can transport the UAV

between two locations without affecting the UAV’s energy

budget. Additionally, since the UAV’s camera has a footprint

with diameter D, it can sample a point without flying directly

over it. Thus, we modify the graph as follows:

(1) Create a square grid of resolution D/
√
2 (Figure 1). Store

the number of Xpml within each grid cell (denoted by π(v)).
Let V be the set of grid vertices with π(v) > 0.

(2) Build a complete undirected graph G = {V,E, π, w}.

For each edge between (u, v) ∈ V , add a weight w(u, v) =
min{d(u, v), 2Ca}. This implies there are two types of edges

between grid points: The UAV can either use the UGV to

travel paying only for the ascent/descent (2CA) or travel

directly between points paying the distance cost (d(u, v)).
We can verify that G is a metric graph [16]. Applying the

algorithm in [9] yields a 4-approximation to Problem 1.

B. Sampling TSPN

Once we have the subset of PML points to be sampled, we

must construct a minimum cost UGV tour to measure each

point. Equation 3 gives a radius within which to obtain a

sample for all points. This radius is not necessarily uniform.

In practice, we have found the radii to be comparable and

hence, use the minimum radius to simplify the algorithm.

We must now find a tour for the UGV which takes a

measurement in all disks. In the standard TSPN with unit

disks [10] only the travel time is considered. However, recall

from Problem 2, the cost of the UGV tour equals the sum

of time spent for traveling and for obtaining measurements.

Let C be the time cost of obtaining a measurement. We are

studying the following new variant of TSP.

Problem 3 (Sampling TSPN): Given a set of disks in the

plane with uniform radius r, find a tour τ of k distinct sample
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locations to minimize the cost len(τ) + kC such that each

disk contains a sample location.

We present a brief description of the algorithm in [10] for

the standard TSPN problem and show how to modify it to ac-

commodate the additional cost of measurements. Dumitrescu

and Mitchell in [10] first find a maximal independent set

(MIS) of non-intersecting disks. Then they find a TSP tour

visiting the centers of the disks in MIS (Figure 3(a)). This

tour intersects the circumference of each disk in the MIS

twice. The final tour that visits each disk is constructed as

follows. Start from an arbitrary disk in the MIS. Follow the

tour in the clockwise order up to the intersection point of

the next disk. Follow the circumference of this disk in the

clockwise order up to the second intersection point of the

same disk. Continue until the starting point is encountered

again. Repeat this process but now follow the untraveled

portion of the circumference of the disks in the MIS.

(a)

�

�

�

�

�

�

�

�

	



(b)

Fig. 2. (a) The TSPN algorithm [10] visiting just the circumference of a
disk in the MIS (shaded) will be forced to take a separate measurement
for each outer disk yielding O(n) measurement locations. The optimal
algorithm can instead visit a small number of locations where the disks
overlap. (b) We modify the tour to visit a fixed number of sites (shown as
dots) around each disk in the MIS yielding a constant factor approximation.

When the UGV has to stop and obtain a measurement in

each disk, restricting the motion to the circumference can be

potentially costly in terms of the number of measurements.

Figure 2(a) shows an instance where this algorithm is forced

to take O(n) measurements, where as an optimal algorithm

can visit only a small number of intersection points.

We modify the local strategy (going around the circumfer-

ence) in order to simultaneously find sampling locations for

the tour. We will bound the additional length due to this new

local strategy, and bound the number of samples obtained

with respect to the optimal. Our algorithm is as follows:

(1) Find an MIS of non-overlapping disks from input disks.

(2) Starting from an arbitrary point, follow the TSP tour of

the centers of disks in the MIS (Figure 3(a)).

(3) When a new center (say x) is reached on the TSP tour,

before visiting the next center on the tour, first visit the eight

sites as shown in Figure 2(b). Sites b, d, h, f lie on a square

of side 2r centered at o and a, c, e, g lie on a square of side

2
√
2r rotated by π

4
. Then continue towards the center of the

next disk in MIS (Figure 3(b)).

(4) Restrict the candidate sampling locations to the set of

centers of disks in MIS and the set of eight sites as described

above. Denote this set of candidate sampling locations by S.

Algorithm 1: Sampling TSPN Algorithm.
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(b) Measurement locations
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(d) Final UGV+UAV Tours

Fig. 3. Steps in constructing a Sampling TSPN tour (Algorithm 1) and final
UGV tour including UAV take-off locations (red squares) from Figure 1.

First we will show that the set S defined above intersects

all disks in X . Then we will bound the size of S with respect

to the size of the optimal number of samples N∗. Finally,

we will bound the length of the tour and thus the total cost.

The full proofs are presented in [16].

Lemma 1: Let S be the set of all centers of the disks in

an MIS of non-overlapping disks of X . Let S also contain

the eight sites as described in Algorithm 1. Then, for each

disk in X , there exists a point in S lying in its interior.

Next, we bound the size of S with respect to the number of

samples in an optimal Sampling TSPN algorithm. We also

show that the total length of our tour is no more than a

constant times the length of the tour of an optimal algorithm

for the Sampling TSPN problem.

Lemma 2: If N∗ is the number of samples by an optimal

algorithm for the Sampling TSPN problem, then |S| ≤ 9N∗.

Lemma 3: Let TALG be the tour constructed by the algo-

rithm above, and T ∗ be the tour for the optimal Sampling

TSPN algorithm. Then len(TALG) ≤ 58 len(T ∗).

Using above lemmas, we can show that the total cost of

our algorithm is at most a constant times the optimal cost.

Theorem 1: Algorithm 1 is a valid Sampling TSPN tour

with cost at most 58 times that of the optimal algorithm.

In practice, we do not have to sample at all sites in S. We

can discard sample locations that do not intersect any disk

or find a smaller subset (e.g. greedily) that samples all the

disks (Figure 3(c)). We also add all the take-off locations

to S, and find a TSP tour of the combined set of points

(Figure 3(d)). Then, after visiting a take-off location, the

UGV continues along its tour. When its time to reach the

landing location from the tour becomes equal to the landing

time, the UGV deviates from its pre-planned route, visits the

landing location, and returns to its pre-planned route. The

total distance overhead for the UGV is at most the budget

of the UAV and in practice, not very significant.
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VI. SIMULATIONS

In previous sections, we presented theoretical bounds on

the number of PML points selected and the distance traveled

by our algorithm with respect to optimal. We expect the

UAV+UGV system to sample more PML points as compared

to a UAV–only system with the same battery constraints.

We explore this through simulations using actual system

parameters and real data collected from an agricultural plot.

A. System Description

We present the details of the system we are developing

to motivate the choice of our simulation parameters. Our

UGV is a Husky A200 by Clearpath Robotics [19]. The UGV

has a typical battery life of two hours and can be extended

to over six hours with additional batteries. The UGV will

measure soil organic matter as a proxy for soil N supply to

the crop using a Minolta SPAD-502 Chlorophyll meter [20].

Our UAV is a Hexa XL by MikroKopter [21]. This UAV

can operate for 25 mins on a single charge. An elevation

of 100m yields a camera footprint of 50m diameter and

takes about 2 minutes to ascend/descend. The images include

multi-spectral information, such as near-infrared reflectance,

used to estimate the crop N status [22].

B. Modeling

To generate realistic data, we constructed a generative

model of N levels and determined sensor noise parameters

using a remote sensing and soil sampling dataset [22]. The

dataset consists of 1375 soil measurements taken manually

in a 50× 250m corn field, and 1m spatial resolution remote

sensing images in the green (G), red (R), and near infrared

(NIR) portions of the spectrum. Soil measurements were

taken with dense uniform coverage giving soil organic matter

(OM) levels at three different times during the season.

We performed GP regression over the set of sample points

and OM measurement values using the GPML Toolbox [23].

This densely-sampled GP defined the hyperparameters which

were used to generate new simulated ground-truth N maps.

From the ground-truth GP regression, we can estimate the

OM sample noise at each point from the data directly (σs in

Equation 2). We used the OM variance directly as σg .

The UAV was modeled as measuring the Normalized

Difference Vegetation Index (NDVI), which is a combination

of NIR and R levels [24]. We assume the NDVI levels are

corrupted by sensor noise σa. We calculated σa from the

sample covariance between NDVI (from hand-measured R

and NIR levels) and OM (directly measured), yielding the

covariance matrix. We can then find the variance in OM

given a measurement of NDVI as,

σa = σ2
OM|NDVI = σ2

NDVI − σ2
OM,NDVI/σ

2
OM

From the dataset, we obtained σa = 0.31 and σg = 0.05.

We randomly generated 100 N maps for a 600 × 400
meter field. A prior estimate of each generated OM map

was created by down sampling the ground-truth map by a

factor of 20 and fitting a GP. We then found the PML points

and ranges using Pd = 0.4 as described in Section IV.

C. Results

We first compare the number of PML points covered

by the UAV+UGV system versus an UAV–only system,

subject to the battery constraint of 25 mins. We used the

implementation from the SFO Toolbox [25] for finding an

orienteering tour, and the Concorde TSP solver [26] as a

subroutine in the Sampling TSPN algorithm implementation.
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(a) UAV–only tour visiting 38 points. 35 posterior points in updated map.
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(b) UAV+UGV tour visiting 50 points. 11 posterior points in updated map.

Fig. 4. Sample simulation instance. The input consists of 75 PML points.
The UAV+UGV tour consists of 6 subtours. The UGV allows the UAV to
transport to farther locations in the plot which is reflected in fewer posterior
PML points generated after incorporating aerial and ground measurements.
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Fig. 5. Histograms of the ratio of (a) number of PML points visited and
(b) posterior PML points generated after updating N map with simulated
measurements, for a UAV+UGV system and a UAV–only system for 100
random instances. Both systems are given an equal budget of 25 minutes.

Figure 4 shows a sample simulation run. We observe that

the UAV–only tour is constrained to only one part of the field

unlike the UAV+UGV system. This instance consisted of 75

PML points, the UAV–only tour visits 38 points whereas the

UAV+UGV tour visits 50 points. Figure 5(a) shows a his-

togram of the ratio of the points covered by the UAV+UGV

and the UAV–only tours for 100 random instances. The ratio

is always greater than 1 as the UAV+UGV system is at least

as good as a UAV–only system in terms of the number of

points visited. Table I shows the effect of varying the budget

on the percentage of input PML points visited.

The UAV+UGV system can cover points that are spread

across the field. We expect the posterior map to have fewer
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TABLE I

PERCENTAGE OF INPUT PML POINTS VISITED (AVG. OF 30 INSTANCES).

Budget (sec) UAV–only UAV+UGV

500 19 25
1000 36 49
1500 55 72

mislabeled points than if all measurements are in one part of

the field. After calculating the tours, measurements for the

sensors were sampled directly from OM values given the

dense (ground truth) GP. We added noise to the measure-

ments using the modeled variances σa = 0.31 and σg = 0.5.

These values were then used to update the prior GP, and to

find the posterior PML points (Figures 4(a) & 4(b)). For a

fair comparison, we also added UGV measurements for each

PML point visited by a UAV–only tour.

Figure 5(b) shows a histogram of the ratio of the posterior

PML points with a UAV+UGV system and a UAV–only

system. Since the number of PML points depend on both

the variance, and the estimated N(x) values, occasionally

there are instances when the number of posterior PML points

with UAV–only system are lesser than that of UAV+UGV

system. However, as seen in Figure 5(b) the UAV+UGV

system generally outperforms the UAV–only system in terms

of number of posterior PML points.

VII. CONCLUSION

In this paper, we studied the problem of designing sensing

strategies for obtaining aerial images and soil samples with

a UAV+UGV system to estimate the nitrogen level in a

plot. Since the battery life of the UAV is limited, the UAV

and UGV can only sample a limited number of points. We

studied the problem of maximizing the number of points

visited by the UAV and UGV. Unlike traditional approaches,

our algorithm takes into consideration the situation where

the UAV can land on the UGV and thus be carried be-

tween points without expending energy. We also studied the

problem of minimizing the time for sampling these points

with a UGV. We presented a constant-factor approximation

algorithm which finds a set of sampling locations and a

tour of these locations, such that each point has a sampling

location within its disk neighborhood.

We have started building the complete system using a

Clearpath Husky A200 ground robot and a hexacopter from

MikroKopter. In order to execute the algorithms presented

in this paper, additional capabilities such as autonomous

landing and soil sampling are necessary which is part of

our ongoing work.
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